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The instability of spherical flames in quiescent premixtures is considered using the
linear theory developed by Bechtold & Matalon, which includes hydrodynamic and
thermodiffusive instabilities. Ranges of unstable wavenumbers are presented for dif-
ferent Markstein numbers as the flame propagates, characterized by the flame Peclet
number. Hydrodynamic instabilities arise at the larger wavelengths and cascade down
through a range of ever-decreasing wavelengths to be stabilized at the smallest wave-
length by thermodiffusive effects. It would appear that, in practice, the associated
cell formation lags somewhat behind what is predicted by the theory and an attempt
is made to allow for this. With it, a fractal analysis is employed with the two lim-
iting unstable wavelengths as inner and outer cut-offs. The ever-increasing surface
wrinkling as the flame propagates creates a larger surface area and consequent flame
acceleration. The analysis yields an expression for the flame speed after a critical
Peclet number has been attained. The flame speed increases as the square root of
elapsed time and the analytical expression is in agreement with the results of mea-
surements of large explosions. The fractal analysis is probably valid because of the
large length-scales and small flame stretch rates, unlike those in many turbulent
flames in engineering applications where the flame stretch rate usually reduces the
burning rate. The mechanisms for the creation of turbulence are discussed, including
a brief speculation of the repercussions for deflagration-to-detonation transitions in
large-scale explosions, including supernovae.
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1. Introduction

The storage and distribution of ever-increasing quantities of flammable gases create
a potential hazard from large gaseous explosions in the atmosphere and a need to
understand their nature. Experimental programmes have investigated such explo-
sions (Lind & Whitson 1977; Gostintsev et al . 1988), which are unique in their large
length-scales. A wide range of meteorological conditions can arise (Abdel-Gayed &
Bradley 1982) and the associated turbulent parameters can be incorporated in math-
ematical models of turbulent combustion (Bradley et al . 1994) to predict turbulent
burning velocities. The present study, however, concentrates on explosions in quies-
cent gas and the flame acceleration that arises from developing flame instabilities.
Improved understanding of such very large deflagrations is also necessary for any
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analysis of unconfined transitions to detonations, including those that possibly occur
in supernovae (Khokhlov et al . 1997a).
The seminal studies of Darrieus (1938) and Landau & Lifshitz (1987) showed

that the propagation at constant speed of a wave of density discontinuity creates
a hydrodynamic instability. A flame advancing into unburned gas comprises such a
surface. The instability may be explained, albeit simplistically, by considering the gas
motion relative to the wave. When the unburned gas moves into the crest of a flame
front it diverges and this increases the pressure. Conversely, the oncoming unburned
gas converges as it approaches the trough of the flame front and this decreases the
pressure. These pressure changes are fundamentally unstable, in that they increase
the wrinkling of the flame front. As a consequence, the overall burning velocity
also increases. The Darrieus–Landau model contains no characteristic length and its
creators anticipated a much earlier development of turbulence than, in fact, occurs.
Later, Istratov & Librovich (1966) showed that at least two characteristic length-
scales were involved. It is now clear that, depending upon directional influences,
thermodiffusive effects can either reduce or reinforce the hydrodynamic instability.
The combined influences of flame stretch and thermodiffusion are also important

and their effects upon the laminar burning velocity, u�, of premixed gases are given
by

u� − un

u�
= KMa, (1.1)

where u� is the burning velocity in the absence of stretch and un is that at the given
stretch rate. When this stretch rate is normalized by the chemical time, δ�/u�, in
which δ� is the flame thickness given by v/u� (v is the kinematic viscosity), it gives
the Karlovitz stretch factor, K. Normalization of the Markstein length, also by δ�,
gives the Markstein number, Ma, and the product of K and Ma gives the deficit in
the burning velocity due to the flame stretch rate. The influences of thermodiffusion
and activation energy, separately expressed in Lewis and Zeldovich numbers, are,
together with the density ratio across the flame, all embodied in the Markstein
number (Bradley et al . 1996).
When a flame surface becomes wrinkled by a perturbation a localized increase

in curvature results in a localized increase in the stretch rate and K. This, with
a positive value of Ma, reduces the burning velocity, while the associated decrease
in curvature over a wavelength increases it and the perturbation is opposed. It is
the mechanism by which thermodiffusive effects might stabilize a flame against the
underlying Darrieus–Landau instability. IfMa is negative, the effects are reversed and
the underlying aerodynamic instability is reinforced by thermodiffusive instability.
For simplicity, a spherical explosion flame is considered and it is shown how insta-

bilities evolve first through the cracking of the flame surface, followed by the develop-
ment of a cellular structure and, if the radius is large enough, the eventual appearance
of a turbulent flame. Four regimes of flame propagation can be discerned, which,
chronologically, involve: (i) stable laminar flame propagation; (ii) unsteady flame
cracking and cell formation; (iii) cellular flame propagation; and (iv) self-turbulizing
flame propagation. Transitions between these regimes are discussed principally in
terms of the values of Peclet number, Pe (the mean flame radius normalized by δ�),
and Markstein number of the mixture. The initial flame instability, together with
its development as the flame propagates, is analysed. Eventually, the flame assumes
many of the aspects of a turbulent flame.
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2. Flame stability analysis

(a) Growth of the instability

The linear stability analysis of Bechtold & Matalon (1987) describes both the hydro-
dynamic and thermodiffusive influences upon the stability of an outwardly propa-
gating spherical flame and provides the theoretical framework for the present work.
The Markstein number is not used explicitly but, in terms of the notation of their
paper, it can be shown to be

γ

2σ

(
+

2σ2 lnσ
γ(σ − 1)

)
, (2.1)

where σ is the density ratio of unburned to burned gas, γ is a function depending
on σ and  is the deviation of the Lewis number from unity on the scale of the
activation energy ( = 0 when the diffusion of heat and mass balances). Distortions
of the flame front are expressed relative to the basic spherical symmetry. Perturbed
variables are expanded in spherical harmonic series and flame stability investigated
with respect to all possible modes. After the flame of radius, r, has propagated beyond
an initial value, r0, significantly greater than δ�, the dimensionless amplitude, a, of
the perturbation relative to the flame front, develops according to

a = a0Rω(1+Ω/Pe ln R). (2.2)

Here a0 is the initial dimensionless amplitude of the perturbation, R is r/r0, Pe =
r/δ� and ω is a growth-rate parameter dependent upon the density ratio, σ, while
Ω depends upon both this and the Markstein number. Expressions for ω and Ω
are given in terms of the series of spherical harmonic integers, n, by Bechtold &
Matalon (1987) and by Bradley & Harper (1994). Typographical corrections to some
key expressions in these references are given in the appendix.
The logarithmic growth rate, Ā, of the amplitude of the perturbation with respect

to the Peclet number depends on n and is derived from equation (2.2):

Ā(n) =
d ln(a/a0)
d lnPe

= ω
(
1− Ω

Pe

)
. (2.3)

A negative value of Ā(n) indicates a stable flame, a positive value an unstable one.
On the right-hand side of the equation the first term, ω, gives the contribution to the
growth rate of the Darrieus–Landau (DL) instability, while the second (−ωΩ/Pe),
gives the contribution due to thermodiffusive instability. These values and Ā(n) are
shown for σ = 6 and different values of Ma and Pe as a function of n in figures 1–
3. Consideration is confined to positive values of Ma. In figure 1, for Ma = 1.4,
Pe = 200, interestingly, at small values of n the DL influence is stabilizing while the
thermodiffusive influence is destabilizing. As n increases above 6 both components
contribute to the instability and ω and Ā(n) become positive. The thermodiffusive
contribution to instability, shown by the lower broken curve, is positive for all values
of n and both instabilities combine to give a higher value of Ā(n). At higher values
of Ma the value of (−ωΩ/Pe) becomes negative and hence thermodiffusive effects
now are stabilizing, as can be seen from figure 2, for Ma = 4 and Pe = 300. Here
Ā(n) is everywhere negative and the flame is stable.
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Figure 1. Logarithmic growth rate, Ā(n), of amplitude of perturbation, with DL, ω, and
thermodiffusive (−ωΩ/Pe) components as a function of n: σ = 6, Ma = 1.4, Pe = 200.

However, as the flame radius increases the stabilizing effect of flame stretch and
thermodiffusion, measured by (−ωΩ/Pe), decreases and at Ma = 4, Pe = 600
(figure 3), Ā(n) becomes positive over a range of values of n between 8 and 35.
The Bechtold & Matalon (1987) theory resolves previous uncertainties about the
existence of a limiting unstable upper value of n. One upper limit is imposed by
the finite flame thickness, while in their numerical calculations of the DL instability
Liberman et al . (1993) suggested the flame became stabilized at scales that exceeded
δ� by at least an order of magnitude. In this present example this scale exceeds δ�
by two orders of magnitude.
Between Pe = 300 and 600 for Ma = 4 (figures 2 and 3), there is a critical value

of the Peclet number, Pec, and spherical harmonic, nc, at which Ā(n) just becomes
positive and the flame unstable. At values of Pe greater than Pec, as already noted
for figure 3, the regime of instability is bounded by two values of n; the lower one
will be defined by nl, the upper one by ns. The value of n where Ā(n) is a maximum
is nm. Values of Pec and nc for Ma = 2, 4 and 8 are given in table 1.

(b) Peninsular of instability

For values of Ma between 2 and 8, where values of Pec could be computed, these
values of n normalized by nc can be generalized by plotting them against Pe/Pec,
as in figure 4, for σ = 6. A peninsular of instability has a lower bound nl/nc and an
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Figure 2. Logarithmic growth rate, Ā(n), of amplitude of perturbation, with DL, ω, and
thermodiffusive (−ωΩ/Pe) components as a function of n: σ = 6, Ma = 4, Pe = 300.

Table 1. Values of Pec and nc for σ = 6

Ma Pec nc

2 78.7 12.3
4 407 14.0
8 1062 14.5

upper bound ns/nc, while the middle curve gives values of nm/nc at which Ā(n) is
a maximum.
A spherical harmonic, n, is essentially a wavenumber with an associated wavelength

normalized by δ� that is indicated by Λ. These are related to Pe by (Bradley & Harper
1994)

n =
2πPe
Λ

. (2.4)

This wavenumber represents the number of wavelengths of a particular value around
the flame circumference. The higher the value of n, the greater the potential number
of cells on the flame surface. Instabilities are generated at the longer wavelengths,
with a limiting lowest unstable wavenumber nl, where the DL instability tends to be
dominant. It can be seen from figure 4 that this wavenumber soon attains a constant
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Figure 3. Logarithmic growth rate, Ā(n), of amplitude of perturbation, with DL, ω, and
thermodiffusive (−ωΩ/Pe) components as a function of n: σ = 6, Ma = 4, Pe = 600.

value that does not change as the flame propagates. It follows from equation (2.4)
that the associated dimensionless longest unstable wavelength, Λl, must increase
linearly with Pe. Figure 4 also shows that, in contrast, as the flame propagates the
limiting value of the upper wavenumber, ns, increases linearly with Pe and, from
equation (2.4), the associated dimensionless smallest unstable wavelength, Λs, must
be constant valued. This wavelength is associated with the stabilizing influence of
thermodiffusion at high curvatures.
As the flame radius increases, so does the wavelength Λl. The flame stretch rate

at these wavelengths is too small to stabilize the flame and further perturbations
of shorter wavelength are created on the surface of the longer-wavelength perturba-
tions. These too may be unstable and a cascade develops of progressively decreasing
unstable wavelengths. The rate of growth of the amplitude of the instability is great-
est at wavelengths that correspond to the wavenumber nm. Eventually this cascade
of ever-decreasing unstable wavelengths is terminated at the wavelength, Λs, where
the flame stretch is sufficiently high to stabilize the flame. The cascade gives rise to a
fractal-like flame wrinkling (Gostintstev et al . 1988; Filyand et al . 1994) and it can
be argued that its fractal nature is similar to that of turbulence (Bradley 1992), but
with an outer cut-off scale of Λl and an inner cut-off of Λs.
The ratio of the area of the fractal surface with this inner cut-off to that with a
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Figure 4. Normalized wavenumbers of lower and upper bounds of instability as a function of
Pe/Pec; nm/nc is a normalized wavenumber where Ā(n) is a maximum: σ = 6, Ma = 2, 4 and
8. Broken line gives fns/nc for Pecl/Pec = 7 and f = 0.03.

resolution given by the outer cut-off at a Peclet number of Pe is

χPe =
(
Λl

Λs

)D−2

=
(
ns/nc

nl/nc

)D−2

. (2.5)

Different values have been proposed for the fractal dimension, D, of a wrinkled
surface, but here a value of 7

3 is taken (Bradley 1992). Shown in figure 5 are calculated
values of nm/nc and ns/nc for different values of Pe/Pec and values of Ma of 2, 4
and 8, with σ = 6. Values of nl are almost constant valued at about 6 or 7 over most
of the range. It can be seen that the influence ofMa is small with this normalization.
If Pe is large enough for flame-stretch rates to be small, the ratio of the flame speed

referred to the mean radius arising from the surface wrinkling, S, to the laminar flame
speed of a smooth sphere, S�, is the ratio of the wrinkled to the smooth surface area:

χPe =
S

S�
=

(
ns/nc

nl/nc

)1/3

. (2.6)
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Figure 5. Normalized wavenumbers of upper bound of instability, ns/nc, and nm/nc as a
function of Pe/Pec: σ = 6, Ma = 2, 4 and 8.

3. Regimes of spherical flame propagation

In the early stages of flame propagation just after ignition, Pe � Pec, the flame
stretch rate, 2 dr/r dt, is sufficiently high to maintain flame stability and the flame
surface is smooth. The burning velocity, un, is given by equation (1.1). As the flame
propagates, eventually Pe = Pec, and the details of this transition have been stud-
ied by Bradley & Harper (1994) through analysis of high-speed schlieren cine pho-
tographs. They found that theoretical values of Pec, calculated as described above,
were fairly close to the observed onset of instability provided this was defined by
the start of crack propagation across the flame surface. The ways in which this
instability develops are shown in detail in figure 6, drawn from actual cine frames
(Lung 1986). A region of high negative curvature in the flame surface, typically
arising from interaction with a spark electrode, initiates a propagating crack. Such
cracks are prone to cross-cracking at corners, as shown in figure 6, until the cracks
eventually form a coherent cellular structure covering the entire flame surface. The
linear theory of Bechtold & Matalon (1987) cannot predict such structural devel-
opment, but Kuznetsov & Minaev (1996) have attempted to do this numerically
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(i)

(iii)

(ii)

(iv)

(v)

visible flame front

crack

other cracks also 
develop at curvatures

secondary cracks
start to develop
along regions of
high curvature of
primary cracks

secondary crack forms again 
at regions of high curvature

the flame becomes cellular

secondary crack forms

Figure 6. Details of crack development on a flame surface (Lung 1986).

using Sivashinky’s (1977, 1983) model of flame surface development. They suggest
the cracks originate at the longer wavelengths and demonstrate how the boundaries
of separate cells form a complete web of cracks, in qualitative agreement with the
experimental observations of Bradley & Harper (1994).
It would appear, however, that the creation of new cells cannot keep pace with

the growth of the flame kernel. As the flame expands experiments show the area of
individual cells also increases until, eventually, at a second critical Peclet number,
Pecl, smaller cells are created. This first occurrence of a developed cellular structure
is accompanied by an increase in flame speed, as a result of the increase in flame
surface area. The creation of cells can only occur when the localized flame stretch
of the cell surface is sufficiently reduced to allow the growth of an instability of
shorter wavelength. For values of Pe � Pecl the flame speed increases continuously
as a consequence of the increasingly wrinkled flame surface area. The shortest wave-
length in the cascade is that associated with stabilization of the LD instability by
thermodiffusive effects.
The growth of cells until they subdivide to form more stable and highly stretched

smaller cells is a dynamic process in which the growth of instabilities appears to
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lag behind the theoretical predictions of Bechtold & Matalon (1987). A time lag
in the development of low-wavelength stabilized cells is suggested by the values of
Pecl measured by Groff (1982) for propane–air explosions. These are between 10
and 20 times greater than the corresponding value of Pec (Bradley & Harper 1994).
Furthermore, Groff (1982) could detect no significant change in flame speed just
after the development of the cellular structure. Values of Pecl � Pec have also been
observed in iso-octane–air and methane–air explosions over a wide range of pressures
and temperatures and correlated by Bradley et al . (1998) and Gu et al . (2000) by

Pecl = 177Ma+ 2177. (3.1)

As Pe increases beyond Pecl, the range of unstable wavelengths increases linearly
with Pe, until it becomes similar to that in turbulent flow. Gostintsev et al . (1988)
surveyed the results of experimental measurements of flame propagation in large-
scale explosions and suggested a critical Peclet number, between about 120 000 and
220 000, for a transition to a turbulent flame. In every case the burning velocity is
about three times the laminar burning velocity just after the suggested transition
(Bradley 1997). The nature of combustion in the regime where Pe � Pecl is now
discussed in more detail.

4. Influence of flame instability on flame speed

To account for the time lag in the development of instabilities the cut-off wavenum-
ber of the shorter wavelength is empirically reduced by taking the datum Peclet
number for the onset of instability, cell formation and flame acceleration to be Pecl,
rather than Pec. This procedure is illustrated in figure 4 for Pecl/Pec = 7. The new
peninsular of instability is bounded by the upper broken line, fns/nc, where f is a
constant, less than unity, and the lower unmodified nl/nc line. This procedure both
increases the wavelength of the inner cut-off and also provides a better Peclet num-
ber datum, in that it is at Pecl that the increase in flame speed due to wrinkling
begins. Conditions at this second critical Peclet number, f(ns/nc)cl = (nl/nc)cl,
define the value of f . As a consequence, the previous expression for flame speed ratio
(equation (2.6)) becomes, for Pe � Pecl,

S

S�
=

(
fns/nc

nl/nc

)1/3

. (4.1)

Because

S� = σu� and S = rc
dPe/Pec
dt

,

where rc is the dimensional radius corresponding to Pec and t is time,

dPe/Pec
dt

=
(
σu�

rc

)(
fns/nc

nl/nc

)1/3

. (4.2)

In the regime of developed cellular flame wrinkling (ns/nc) increases linearly with
(Pe/Pec) (see figure 5), and nl/nc soon becomes constant valued. Hence

d(Pe/Pec)
dt

=
(
σu�

rc

)[(
nc

nl

)
d(fns/nc)
d(Pe/Pec)

(
Pe

Pec
− Pecl
Pec

)
+

(
fns

nc

)
cl

(
nc

nl

)]1/3

.

(4.3)
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Let (
nc

nl

)
f

(
d(ns/nc)
d(Pe/Pec)

)
= κ = const.

Hence

d(Pe/Pec)[
κ

(
Pe

Pec
− Pecl
Pec

)
+

(
nc

nl

)
f

(
ns

nc

)
cl

]1/3 =
(
σu�

rc

)
dt. (4.4)

Integration gives

Pe = Pecl −
(
nc

nl

)
f

κ

(
ns

nc

)
cl
Pec +

{
2
3

(
σu2

�

vPe
1/3
c

)
κ1/3t

}3/2

(4.5)

provided

t = 0 when Pe = Pecl −
(
nc

nl

)
f

κ

(
ns

nc

)
cl
Pec.

In terms of the dimensional radius, r,

r = r0 +
[
0.544σ3/2u2

�κ
1/2

v1/2Pe
1/2
c

]
t3/2, (4.6)

where

r0 = rcl −
(
nc

nl

)
f

κ

(
ns

nc

)
cl
rc. (4.7)

Gostintsev et al . (1988) have generalized the experimental data on large-scale tur-
bulent explosions empirically in the form

r = r0G +AGt
3/2, (4.8)

where AG is an experimentally determined constant that depends upon the fuel–
air mixture and r0G is a datum flame radius. Provided Ma is known, the present
analytical approach in conjunction with equation (3.1) enables the bracketed terms in
equation (4.6), A, to be evaluated and compared with the corresponding experimental
value of AG, reported by Gostintsev et al . (1988). The results for three diverse
mixtures, for which the value of Ma is known with sufficient accuracy, are given in
table 2. In every case, values of A are greater than those of AG. One explanation of
this is that the theory takes no account of radiative loss from the flame kernel. This
might explain up to ca. 20% of the discrepancy.
Differentiation of equation (4.6) gives the flame speed

S =
dr
dt
= 3

2At
1/2, (4.9)

and also, from equation (4.6),

S = 3
2A

2/3(r − r0)1/3. (4.10)
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Table 2. Comparison of computed values of A (the bracketed term in equation (4.6)) with
experimental values of AG from (Gostintsev et al. 1988) (SI units)

mixture σ u� Ma v × 105 Pec f A AG

10% CH4–air 7.456 0.385 4.02 1.574 414.2 0.0309 8.04 5.7
4% C3H8–air 7.915 0.38 5.0 1.726 598.5 0.0431 8.13 7.1
36.4% H2–air 6.673 2.75 12 2.36 1782 0.1071 275 166

This implied continuing flame acceleration raises the possibility of a deflagration-to-
detonation transition. The gas velocity just ahead of the flame is S(σ− 1)/σ and for
such a transition this must first attain the acoustic velocity. For the most reactive
hydrogen–air mixture in table 2 a gas velocity of 330 m s−1 would be reached at a
flame radius of 230 m, neglecting radiation. This confirms the conclusion of other
analyses that such transitions are much more difficult in unconfined than in confined
explosions (Khokhlov et al . 1997b).
Further developments of Sivashinsky’s (1977, 1983) equation for the evolution

of a flame surface have led to more comprehensive direct numerical simulations.
Those of Filyand et al . (1994) give a satisfactory qualitative description of the flame
wrinkling and the dependency of S upon t1/2, but generally such simulations tend
to underestimate the flame speed. There are difficulties in the numerical processing
of the strongly nonlinear equations and the non-steady cellular structure. Cambray
et al . (1996) have suggested that as the flame Peclet number exceeds the critical
value the theoretical understanding deteriorates, particularly in regard to the causes
of cell splitting. This affects the flame speed and these researchers have developed a
mean-field approach based upon the dynamics of poles to describe the wrinkle crests.
In another approach, Ashurst (1997) uses two-dimensional Lagrangian simulations
and a potential flow assumption to derive an expression with several similarities to
equation (4.6), again confirming the t1/2 dependency of S.

5. Discussion

The principal difference between the present study and that of Gostintsev et al .
(1988) is that, in the former, equation (4.6) applies when Pe � Pecl, whereas, in the
latter, equation (4.8) only applies above much higher critical Peclet numbers of about
150 000 and is associated by these workers with a sharp transition to a turbulent
flame. Turbulence is characterized by velocity fluctuations that extend over a range
of wavelengths. When this range is of a sufficient extent the flow is described as
turbulent. For isotropic turbulence, the power spectral density function exhibits an
inertial subrange that extends over a range of about one decade of wavenumbers when
the Reynolds number based on the Taylor scale attains a value of about 100. This
is probably close to a lower limit of Reynolds number that characterizes the onset
of turbulence. A comparable range of unstable wavelengths can arise in spherical
explosions between ne/nc and fns/nc. This extends over a decade at about Pe/Pec =
64 for Pecl/Pec = 7 and f = 0.03 (see figure 4). For Peclet numbers higher than this
the flame therefore might possibly be classed as turbulent, but it is difficult to identify
a sharp transition with any certainty. Furthermore, the turbulence is characterized,
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not by an external flow, but by a self-generation mechanism inherent in the flame
structure.
The large length-scales in atmospheric explosions create not only the possibility

of a wide range of unstable wavelengths, but also of low values of flame stretch
rate. This contrasts with the turbulent combustion in most engineering applications,
where length-scales are small. As a consequence of this, and the often high flow
rates, the flame stretch rates in these applications can reduce turbulent burning
velocities well below values suggested by, sometimes invalid, simple fractal analysis
(Bradley 1992). The fact that the present combination of instability and fractal
analyses seems to be in satisfactory agreement with experiment tends to confirm the
absence of strong flame stretch rate effects. This is supported by the extended Borghi
diagram of turbulent flame regimes (Abdel-Gayed & Bradley 1985). Reference to this
shows that at high values of turbulent length-scale, normalized by δ�, high values of
turbulent burning velocity, normalized by u�, can be achieved at rather low values of
RMS turbulent velocity, normalized by u�, and very low values of Karlovitz stretch
factor. In the present large-scale explosions, the turbulent length-scale normalized
by δ� might be taken as Λ�, and because nl ≈ 2π, from equation (2.4), Λ� ≈ Pe,
giving potentially very high normalized turbulent length-scales.
There remains the question of the mechanism for the generation of the turbulence,

because in the theory of Bechtold & Matalon (1987), although the disturbances in
the unburned gas are caused by the distortion of the flame front, the unburned gas
retains its irrotational structure. In practice, the most probable sources of turbu-
lence are Taylor instabilities arising from the baroclinic vorticity-generation term,
∇p × ∇ρ/ρ2, in the vorticity equation (Bradley & Harper 1994). Both gravity and
the hydrodynamic pressure contribute to the pressure term. Bray et al . (1981) have
shown theoretically how, in unconfined flames, turbulence increases through the flame
as a result of buoyant production of turbulence and this same mechanism, associ-
ated with the mean pressure gradient, also causes counter-gradient diffusion. Using
particle image velocimetry, Mueller et al . (1998) have shown flame-generated vor-
ticity to be favoured by buoyancy-driven flames, large eddy scales, low turbulence,
low Karlovitz stretch factors and an upward flow of products. These theoretical and
experimental findings confirm that the turbulence in large-scale explosions can be
flame generated. There is also evidence that the very large length-scale turbulence
in supernovae is driven by buoyancy (Khokhlov et al . 1997a).

6. Conclusions

(1) The instability theory of Bechtold & Matalon (1987) is able to express the
wavenumbers at which a spherical flame is unstable in terms of Markstein
number and density ratio for different Peclet numbers. Critical Peclet numbers
can be identified for the onset of instability.

(2) The structure of cellular flames resulting from the instabilities becomes fractal
in nature. The instabilities originate as a Darrieus–Landau instability at the
longer wavelengths and cascade to the shortest wavelength, to be stabilized
by thermodiffusive instability. An individual cell grows in size as the flame
propagates and its curvature diminishes, with the result that the local stretch
rate decreases to the point at which the cell is locally destabilized, with the
formation of smaller cells of higher curvature.
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(3) Experiments suggest there is a time lag in cell formation, such that the actual
critical Peclet number for developed cellularity is larger than that for the onset
of instability.

(4) From these findings, with the limits of unstable wavelengths as outer and inner
cut-offs, a fractal expression gives the increase in surface area as a result of
flame wrinkling due to instabilities. At the low flame stretch rates that seem
to obtain, this increase in surface area gives a corresponding increase in flame
speed. The expression for this shows the flame speed to depend on t1/2 and is
in satisfactory agreement with experimental measurements.

(5) The expression for flame speed enables the radius at which an acoustic veloc-
ity is attained to be found. This shows that very large radii are necessary to
obtain a deflagration-to-detonation transition in unconfined flames in a quies-
cent mixture.

(6) The mechanisms for flame-generated turbulence have been discussed and these
are favoured in large-scale unconfined explosions.

Appendix A.

In Bechtold & Matalon (1987) the expressions for Q1 and Q2 following eqn (52) on
p. 85 must be replaced by the following expressions:

Q1 = [2ωa+ b− 2a]−1
{
lnσ
σ − 1[(σ + 1)n

4 + (2ω + 5)σn3 + (ωσ − 2σ2 + σ − 1)n2

+ (σ − 7− 3ω − σω)nσ − 2σ(1 + ω)] + n(n2 − 1)(n+ 2)σ − 1
σ

}
, (A 1)

Q2 = γ[2σ(2ωa+ b− 2a)]−1{2n4 + [2ωσ + 2ω + 10σ − 3]n3

+ [2σω2 + (5σ − 1)ω + 3σ − 2σ2 − 2]n2

+ [σω2(1− 4σ)− (14σ2 + 1)ω + 3− 9σ − 8σ2]n− 2σ(ω2 + 4ω + 3)}. (A 2)
In Bradley & Harper (1994), a multiplying n must be inserted after (4 + 5σ) in the
expression for b in equation (A2) on p. 570.
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